Introduction to Dynamical Systems

Solutions Problem Set 6

Exercise 1. Let (X, m) be a probability space and σ be underlying sigma-algebra of measurable sets. Introduce

$$\tilde{X} = \sigma / \sim$$

where the equivalence relation \sim is defined via $A \sim B$ if and only if $m(A \triangle B) = 0$.

(i) Show that the function

$$d \colon \ \tilde{X} \times \tilde{X} \longrightarrow \mathbb{R}_+ \\ ([A], [B]) \longmapsto m(A \triangle B)$$

defines a metric on \tilde{X} .

(ii) Show that (\tilde{X}, d) is complete.

Solution. The fact that d is a distance on \tilde{X} is immediate, and in order to show (ii), notice that if $(A_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, then every subsequence converges to the same limit, provided one such limit exists. Hence we can consider a subsequence $(A_n)_{n\in\mathbb{N}}$ satisfying

$$d(A_n, A_{n+1}) < 2^{-n}$$
.

Let $U_n = \bigcup_{m \geq n} A_m$ and $L_n = \bigcap_{m \geq n} A_m$. We have $L_n \subset A_n \subset U_n$ and

$$d(A_n, U_n) = m\left(\left(\bigcup_{m \ge n} A_m\right) \setminus A_n\right) + m\left(A_n \setminus \bigcup_{m \ge n} A_m\right)$$

$$\leq m\left(\bigcup_{m \ge n} A_{m+1} \setminus A_m\right) \leq \sum_{m \ge n} 2^{-m} = 2^{1-n}.$$

Similarly,

$$d(A_n, L_n) = m\left(\left(\bigcap_{m \ge n} A_m\right) \setminus A_n\right) + m\left(A_n \setminus \bigcap_{m \ge n} A_m\right)$$

$$\leq m\left(\bigcup_{m \ge n} A_m \setminus A_{m+1}\right) \leq \sum_{m \ge n} 2^{-m} = 2^{1-n}.$$

Now consider $A = \bigcap_{n \in \mathbb{N}} \bigcup_{m > n} A_m$. Then $L_n \subset E \subset U_n$ and therefore

$$d(A_n, A) \le d(U_n, L_n) \le d(U_n, A_n) + d(L_n, A_n) \le 2^{2-n} \underset{n \to \infty}{\longrightarrow} 0.$$

Exercise 2. Let (X, m) be a probability space and $T: X \longrightarrow X$ a measure preserving map. Assume that for each pair of measurable sets $A, B \in \sigma$ there exists N such that

$$m(A \cap T^{-n}(B)) = m(A)m(B), \quad \forall n \ge N.$$

Show that $m(A) \in \{0,1\}$ for each $A \in \sigma$. Hint: use Baire category theorem and (1).

Solution. Assume for contradiction that there is $B \in \sigma$ with 0 < m(B) < 1. Define, for each $n \ge 1$, the set

$$\mathcal{B}_n = \left\{ A \in \sigma \colon m(A \cap T^{-n}(B)) \neq m(A)m(B) \right\}.$$

Then \mathcal{B}_n is open in the topology in **Exercise 1** for all $n \geq 1$ and so is $\mathcal{J}_k = \bigcup_{n \geq k} \mathcal{B}_n$. Moreover, it is dense.

Indeed, given a set $A \notin \mathcal{J}_k$ with m(A) > 0, choose $n_1 > k$ such that $m(A \cap T^{-n_1}(B)) = m(A)m(B)$, and let $A_1 := A \cap T^{-n_1}B$. Inductively, if $A_{\ell-1} \subset A$ with $m(A_{\ell-1}) = m(A)m(B)^{\ell-1}$ has already been defined, use the hypothesis to find $n_{\ell} > k$ such that $A_{\ell} := A_{\ell-1} \cap T^{-n_{\ell}}B$ satisfies

$$m(A_{\ell}) = m(A_{\ell-1})m(B) = m(A)m(B)^{\ell}.$$

Given $\varepsilon > 0$, choose ℓ such that $m(A_{\ell}) = m(A)m(B)^{\ell} < \varepsilon$. Then $d(A, A \setminus A_{\ell}) < \varepsilon$, and

$$m((A \setminus A_{\ell}) \cap T^{-n_{\ell}}B) = m(A \cap T^{-n_{\ell}}B) - m(A_{\ell}) = m(A)m(B) - m(A_{\ell}) \neq m(A \setminus A_{\ell})m(B).$$

Thus $A \setminus A_{\ell} \in \mathcal{J}_k$, and for the same reason, $A_{\ell} \in \mathcal{J}_k$. To approximate the equivalence class of the empty set, use the above construction with Ω in place of A, to obtain a measurable set $\Omega_{\ell} \in \mathcal{J}_k$ with $m(\Omega_{\ell}) = m(B)^{\ell} < \varepsilon$. Thus $d(\Omega_{\ell}, \emptyset) < \varepsilon$, and we have verified that \mathcal{J}_k is dense in (M, d).

By the Baire category theorem, the intersection $\bigcap_{k\geq 1} \mathcal{J}_k$ is nonempty, and any set A in it contradicts the hypotheses.

Exercise 3. Let (X, m) be a finite measure space and $T: X \longrightarrow X$ a measure preserving, bijective map with measurable inverse T^{-1} . Then show that for every $f \in L^1(X, m)$ we have

$$\lim_{N \to \infty} \sum_{j=0}^{N-1} f(T^j(x)) = \lim_{N \to \infty} \sum_{j=0}^{N-1} f(T^{-j}(x))$$

for almost every $x \in X$.

Solution. Recalling the proof of the mean ergodic theorem in Lecture 5.pdf, notice that the subspace $V = \{U_{T}g = g\}$ generated by T is the same as $V' = \{U_{T^{-1}}g = g\}$ induced by T^{-1} . Hence the orthogonal projection P_T is equal to $P_{T^{-1}}$. We conclude that the averages in the statement converge to the same function in $L^2(X, m)$. To show that this is the case in $L^1(X, m)$ as well, one follows a similar procedure as that of Exercise 4 in Problem Set 4.